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Abstract

Domain-specific search engines are becoming in-
creasingly popular because they offer increased ac-
curacy and extra features not possible with the
general, Web-wide search engines. For example,
www.campsearch.com allows complex queries by age-
group, size, location and cost over summer camps. Un-
fortunately, these domain-specific search engines are
difficult and time consuming to maintain. This pa-
per proposes the use of machine learning techniques
to greatly automate the creation and maintenance of
domain-specific search engines. We describe new re-
search in reinforcement learning, text classification
and information extraction that automates efficient
spidering, populating topic hierarchies, and identify-
ing informative text segments. Using these techniques,
we have built a demonstration system: a search engine
for computer science research papers. It already con-
tains over 33,000 papers and is publicly available at
WWW. COTA.JPTC. COMN.

1 Introduction

As the amount of information on the World Wide
Web grows, it becomes increasingly difficult to find
just what we want. While general-purpose search en-
gines, such as Altavista and HotBot offer high coverage,
they often provide only low precision, even for detailed
queries.

When we know that we want information of a certain
type, or on a certain topic, a domain-specific search
engine can be a powerful tool. For example:

e www.campsearch.com allows the user to search for
summer camps for children and adults. The user
can query the system based on geographic location,
cost, duration and other requirements.

e www.netpart.com lets the user search over company
pages by hostname, company name, and location.

e www.mrge.com allows the user to search for reviews
of movies. Type a movie title, and it provides links
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to relevant reviews from newspapers, magazines, and
individuals from all over the world.

e www.maths.usyd.edu.au:8000/MathSearch.htm| lets
the user search web pages about mathematics.

e www.travel-finder.com allows the user to search web
pages about travel, with special facilities for search-
ing by activity, category and location.

Performing any of these searches with a traditional,
general-purpose search engine would be extremely te-
dious or impossible. For this reason, domain-specific
search engines are becoming increasingly popular. Un-
fortunately, however, building these search engines is a
labor-intensive process, typically requiring significant
and ongoing human effort.

This paper describes the Ra Project an effort to
automate many aspects of creating and maintaining
domain-specific search engines by using machine learn-
ing techniques. These techniques allow search engines
to be created quickly with minimal effort and are suited
for re-use across many domains. This paper presents
the automation of three different aspects of search en-
gine creation, using reinforcement learning, text clas-
sification and information extraction.

Every search engine must begin with a collection of
documents to index. A spider (or “crawler”) is an
agent that traverses the Web, looking for documents
to add to the search engine. When aiming to populate
a domain-specific search engine, the spider need not ex-
plore the Web indiscriminantly, but should explore in a
directed fashion in order to find domain-relevant docu-
ments efficiently. We frame the spidering task in a rein-
forcement learning framework (Kaelbling, Littman, &
Moore 1996), allowing us to precisely and mathemat-
ically define “optimal behavior.” This approach pro-
vides guidance for designing an intelligent spider that
aims to select hyperlinks optimally. Our preliminary
experimental results show that a simple reinforcement
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learning spider is nearly three times more efficient than
a spider with a breadth-first search strategy.

Search engines often provide a hierarchical organiza-
tion of materials into relevant topics; Yahoo is the pro-
totypical example. Automatically adding documents
into a topic hierarchy can be framed as a text classi-
fication task. We present extensions to a probabilis-
tic text classifier known as naive Bayes (Lewis 1998;
McCallum & Nigam 1998) that succeed in this task
without requiring large sets of labeled training data.
The extensions reduce the need for human effort in
training the classifier by (1) using the results of key-
word matching to obtain training data with approxi-
mate class labels, and (2) performing robust parameter
estimation in the face of sparse data by using a statis-
tical technique called shrinkage that takes advantage
of the hierarchy. Use of the resulting algorithms places
documents into a 51-leaf computer science hierarchy
with 70% accuracy a figure we believe is not far be-
low human disagreement. We also present preliminary
results indicating that we can increase accuracy even
further by augmenting the labeled training data with
a large pool of unlabeled data, and integrating the two
using Expectation-Maximization (Dempster, Laird, &
Rubin 1977).

Extracting characteristic pieces of information from
the documents of a domain-specific search engine al-
lows the user to search over these features in a way
that general search engines cannot. Information ex-
traction, the process of automatically finding specific
textual substrings in a document, is well suited to this
task. We approach information extraction with tech-
niques from statistical language modeling and speech
recognition, namely hidden Markov models (Rabiner
1989). Our initial algorithm extracts the title, authors,
institution, journal name, etc., from research paper ref-
erence sections with 93% accuracy.

2 The Cora Search Engine

We have brought all the above-described machine
learning techniques together in a demonstration sys-
tem: a domain-specific search engine on computer sci-
ence research papers named Cora. The system is pub-
licly available at www.cora.jprc.com. Not only does
it provide phrase and keyword search facilities over
33,000 collected papers, it also places these papers
into a computer science topic hierarchy, maps the
web of citations between papers, and provides bibli-
ographic information about each paper. Our hope is
that, in addition to providing a platform for testing
machine learning research, this search engine will be-
come a valuable tool for other computer scientists

complementing similar efforts, such as the Computing

Research Repository (zzz.lanl.gov/archive/cs), by pro-
viding functionality and coverage not available online
elsewhere.

The construction of a search engine can be decom-
posed into three functional stages: collecting new in-
formation, collating and extracting from that informa-
tion, and presenting it in a publicly-available web in-
terface. Cora implements each stage by drawing upon
machine learning techniques described in this paper.

The first stage is the collection of computer science
research papers. A spider crawls the Web, starting
from the home pages of computer science departments
and laboratories. Using reinforcement learning, it effi-
ciently explores the Web, collecting all postscript doc-
uments it finds. Nearly all computer science papers
are in postscript format, though we are adding more
formats, such as PDF. If the document can be reli-
ably determined to have the format of a research paper
(e.g. by having Abstract and Reference sections), it is
added to the repository. The ASCII text is extracted
from the postscript document. Using this system, we
have found 33,000 computer science research papers,
and are continuing to spider for even more.

The second stage of building a search engine is to
extract relevant knowledge from each paper. To this
end, the beginning of each paper (up to the abstract)
is passed through an information extraction system
that automatically finds the title, author, institution
and other important header information. Additionally,
the bibliography section of each paper is located, indi-
vidual references identified, and each reference broken
down into the appropriate fields, such as author, title,
journal, date, etc. Using this extracted information,
reference and paper matches are made grouping all
citations to the same paper together, and matching ci-
tations to papers from the repository. Of course, many
papers that are cited do not appear in the repository.
This matching procedure is similar to one used by Cite-
Seer (Bollacker, Lawrence, & Giles 1998), except that
we use additional field-level constraints provided by
knowing, for example, the title and authors of each
paper.

The third stage is to provide a publicly-available user
interface. We have implemented two methods for find-
ing papers. First, a search engine over all the papers is
provided. It supports commonly-used searching syn-
tax for queries, including +, -, and phrase searching
with "" and ranks resulting matches by the weighted
log of term frequency, summed over all query terms. It
also allows searches restricted to extracted fields, such
as authors and titles. Query response time is usually
less than a second. The results of search queries are
presented as in Figure 1. Additionally, each individual
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Figure 1: A screen shot of the query results page of the
Cora search engine (www.cora.jprc.com). Note that paper
titles, authors and abstracts are provided at this level.

paper has a “details page” that shows all the relevant
information, such as title and authors, links to the ac-
tual postscript paper, and a citation map that can be
traversed either forwards or backwards. One example
of this is shown in Figure 2. We also provide auto-
matically constructed BibTeX entries, general Cora in-
formation links, and a mechanism for submitting new
papers and web sites for spidering.

The other user interface access method is through a
topic hierarchy, similar to that provided by Yahoo, but
customized specifically for computer science research.
This hierarchy was hand-constructed, and contains 51
leaves, varying in depth from one to three. Each leaf
node in the hierarchy is seeded with just a few key-
words, and from these keywords a robust, hierarchi-
cal naive Bayes classifier is built. Using the classifier,
each research paper is automatically placed into a topic
node. By following hyperlinks to traverse the topic hi-
erarchy, the most-cited papers in each research topic
can be found.

3 Efficient Spidering

Spiders are agents that explore the hyperlink graph of
the Web, often for the purpose of finding documents
with which to populate a search engine. Extensive spi-
dering is the key to obtaining high coverage by the
major Web search engines, such as AltaVista and Hot-
Bot. Since the goal of these general-purpose search
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Figure 2: A screen shot of a details page of the Cora search
engine. At this level, all extracted information about a
paper is displayed, including the citation linking, which are
hyperlinks to other details pages.

engines is to provide search capabilities over the Web
as a whole, for the most part they simply aim to find
as many distinct web pages as possible. Such a goal
lends itself to strategies like breadth-first search. If,
on the other hand, the task is to populate a domain-
specific search engine, then an intelligent spider should
try to avoid hyperlinks that lead to off-topic areas, and
concentrate on links that lead to documents of interest.

In Cora, efficient spidering is a major concern.
The majority of the pages in many computer sci-
ence department web sites do not contain links to re-
search papers, but instead are about courses, home-
work, schedules and admissions information. Avoid-
ing whole branches and neighborhoods of departmen-
tal web graphs can significantly improve efficiency and
increase the number of research papers found given a
finite amount of crawling time. We use reinforcement
learning to perform efficient spidering.

Several other systems have also studied efficient
information gathering from the Web. ARACHNID
(Menczer 1997) maintains a collection of competitive,
reproducing and mutating agents for finding informa-
tion on the Web. WebWatcher (Joachims, Freitag,
& Mitchell 1997) is a browsing assistant that helps a
user find information by recommending which hyper-
links to take next using reinforcement learning. Cho,
Garcia-Molina, & Page (1998) suggest a number of
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heuristic ordering metrics for choosing which link to
crawl next when searching for certain categories of web
pages. Laser uses reinforcement learning to tune the
search parameters of a search engine (Boyan, Freitag,
& Joachims 1996).

3.1 Reinforcement Learning

In machine learning, the term “reinforcement learn-
ing” refers to a framework for learning optimal deci-
sion making from rewards or punishment (Kaelbling,
Littman, & Moore 1996). It differs from supervised
learning in that the learner is never told the correct
action for a particular state, but is simply told how
good or bad the selected action was, expressed in the
form of a scalar “reward.”

A task is defined by a set of states, s € S, a set
of actions, a € A, a state-action transition function,
T:SxA— S, and a reward function, R: Sx A — R.
At each time step, the learner (also called the agent)
selects an action, and then as a result is given a reward
and its new state. The goal of reinforcement learning
is to learn a policy, a mapping from states to actions,
7 :S — A, that maximizes the sum of its reward over
time. The most common formulation of “reward over
time” is a discounted sum of rewards into an infinite
future. A discount factor, 7,0 < v < 1, expresses
“inflation,” making sooner rewards more valuable than
later rewards. Accordingly, when following policy ,
we can define the value of each state to be:

VTi(s) =D ', (1)

where r; is the reward received ¢ time steps after start-
ing in state s.! The optimal policy, written 7*, is the
one that maximizes the value, V7 (s), for all states s.

In order to learn the optimal policy, we learn its
value function, V*, and its more specific correlate,
called Q). Let Q*(s,a) be the value of selecting action
a from state s, and thereafter following the optimal
policy. This is expressed as:

Q*(s,a) = R(s,a) +yV*(T (s, a)). (2)

We can now define the optimal policy in terms of @
by selecting from each state the action with the high-
est expected future reward: 7*(s) = arg max, @*(s, a).
The seminal work by Bellman (1957) shows that the
optimal policy can be straightforwardly found by dy-
namic programming.

In preliminary experiments currently reported we re-
strict ¥ = 0; experiments in progress are using delayed
rewards.

3.2 Spidering as Reinforcement Learning

As an aid to understanding how reinforcement learn-
ing relates to spidering, consider the common reinforce-
ment learning task of a mouse exploring a maze to find
several pieces of cheese. The agent’s actions are mov-
ing among the grid squares of the maze. The agent
receives a reward for finding each piece of cheese. The
state is the position of the mouse and the locations
of the cheese pieces remaining to be consumed (since
the cheese can only be consumed and provide reward
once). Note that the agent only receives immediate re-
ward for finding a maze square containing cheese, but
that in order to act optimally it must choose actions
considering future rewards as well.

In the spidering task, the on-topic documents are
immediate rewards, like the pieces of cheese. The ac-
tions are following a particular hyperlink. The state
is the locations of the on-topic documents remaining
to be consumed. The state does not include the cur-
rent “position” of the agent since a crawler can go to
any URL next. The number of actions is large and
dynamic, in that it depends on which documents the
spider has visited so far.

The key features of topic-specific spidering that
make reinforcement learning the proper framework for
defining the optimal solution are: (1) performance is
measured in terms of reward over time, and (2) the
environment presents situations with delayed reward.

3.3 Practical Approximations

The problem now is how to apply reinforcement learn-
ing to spidering in such a way that it can be practically
solved. Unfortunately, the state space is huge: two to
the power of the number of on-topic documents on the
Web. The action space is also large: the number of
unique URLs with incoming links on the Web. Thus we
need to make some simplifying assumptions in order to
make the problem tractable and to aid generalization.
Note, however, that by defining the exact solution in
terms of the optimal policy, and making our assump-
tions explicit, we will better understand what inaccura-
cies we have introduced, and how to select areas of fu-
ture work that will improve performance further. The
assumptions we choose initially are the following two:
(1) we assume that the state is independent of which
on-topic documents have already been consumed; that
is, we collapse all states into one, and (2) we assume
that the relevant distinctions between the actions can
be captured by the words in the neighborhood of the
hyperlink corresponding to each action; more specifi-
cally, we begin by assuming that the value of an action
is a function of the unordered list of words in the an-
chor text of the hyperlink.
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Thus our @ function becomes a mapping from
a “bag-of-words” to a scalar (sum of future re-
ward). Learning to perform efficient spidering then in-
volves only two remaining sub-problems: (1) gathering
training data consisting of bag-of-words/future-reward
pairs, and (2) learning a mapping using the training
data.

There are several choices for how to gather train-
ing data. Although the agent could straightforwardly
learn from experience on-line, we currently train the
agent off-line, using collections of already-found docu-
ments and hyperlinks. In the vocabulary of traditional
reinforcement learning, this means that the state tran-
sition function, T, and the reward function, R, are
known, and we learn the ) function by dynamic pro-
gramming in the original, uncollapsed state space.

We represent the mapping using a collection of naive
Bayes text classifiers (see Section 4.2). We perform the
mapping by casting this regression problem as classi-
fication (Torgo & Gama 1997). We discretize the dis-
counted sum of future reward values of our training
data into ten bins, place the hyperlinks into the bin
corresponding to their @) values as calculated above,
and use the hyperlinks’ text as training data for a naive
Bayes text classifier. For the anchor text of each hyper-
link, we calculate the probabilistic class membership
for each bin. Then the reward value of a hyperlink
is set by taking a weighted average of each bins’ re-
ward value, using the probabilistic class memberships
as weights.

3.4 Data and Experimental Results

In August 1998 we completely mapped the docu-
ments and hyperlinks of the web sites of computer sci-
ence departments at Brown University, Cornell Univer-
sity, University of Pittsburgh and University of Texas.
They include 53,012 documents and 592,216 hyper-
links. We perform a series of four test/train splits,
in which the data from three universities was used to
train a spider that then is tested on the fourth. The
target pages (for which a reward of 1 is given) are com-
puter science research papers.?

The value of all the hyperlinks is determined by find-
ing all target pages, and propagating reward out along
the incoming hyperlinks, with dynamic programming.
Experiments with delayed reward are in progress. We
currently report results with immediate reward only,
where v = 0. This assignment results in the degen-
erate case of dynamic programming where in the first
and only iteration the value of a hyperlink is set to the
number of target pages pointed to by the destination

2They are identified by a separate, simple hand-coded
algorithm that has very high precision.
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Figure 3: The performance of reinforcement learning spi-
dering versus traditional breadth-first search, averaged over
four test/train splits with data from four universities. The
vertical axis shows the percentage of on-topic documents
found, while the horizontal axis shows the percentage of
hyperlinks followed thus far into the spider’s exploration.
The reinforcement learning spider finds target documents
significantly faster than the traditional method.

of the hyperlink.

A spider trained in this fashion is evaluated on each
test/train split by having it spider the test univer-
sity, and performance is compared with breadth-first
search. Figure 3 plots the number of research papers
found over the course of all the pages visited, again
averaged over all four universities. Notice that at all
times during its progress, the reinforcement learning
spider has found more research papers than breadth-
first search, and that its performance is especially
strong in the beginning.

One measure of performance is the number of hy-
perlinks followed before 75% of the research papers are
found. Reinforcement learning performance is signifi-
cantly more efficient, requiring exploration of only 11%
of the hyperlinks, in comparison to the breadth-first
search’s 30%. This represents nearly a factor of three
increase in spidering efficiency.

3.5 Future Work

The most important next step after these preliminary
results is to relax some of the restrictive assumptions
made thus far. Towards this goal, experiments aim to
show that representing delayed reward can further im-
prove the efficiency of a directed spider. We believe
that there are many features that are not indicative of
immediate reward but are predictive of future reward;
following them should improve performance further.
We are also studying enlarged feature sets to repre-
sent a hyperlink for the purpose of the ) function:
namely, we are working on using word neighborhoods,
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Figure 4: A subset of Cora’s topic hierarchy. Each node contains its title, and the five most probable words, as calculated
by naive Bayes and special shrinkage with vertical word redistribution. Several additional nodes in deeper layers of the
hierarchy are not shown due to space limitations. Words that were not among the keywords for that class are indicated with

italics.

headers, titles, and words from hyperlink-neighboring
pages. Finally, we are also exploring methods that in-
clude network latency in the optimization criteria, so
that fast web servers can be explored before slower
ones.

4 Classification into a Topic Hierarchy

Topic hierarchies are an efficient way to organize, view
and explore large quantities of information that would
otherwise be cumbersome. The U.S. Patent database,
Yahoo, MEDLINE and the Dewey Decimal system are
all examples of topic hierarchies that are created to
make information more manageable.

As Yahoo has shown, a topic hierarchy can be a use-
ful, integral part of a search engine. Many search en-
gines (e.g. Lycos, Excite, and HotBot) now display
hierarchies on their front page. This feature is equally
valuable for domain-specific search engines. We have
created a 51-leaf hierarchy of computer science top-
ics for Cora, shown in part in Figure 3.5. Creating
the hierarchy and selecting just a few keywords asso-
ciated with each node took about three hours, during
which we examined conference proceedings, and ex-
plored computer science sites on the Web.

A much more difficult and time-consuming part of
creating a hierarchy is populating it with documents
that are placed in the correct topic branches. Ya-
hoo has hired large numbers of people to categorize
web pages into their hierarchy. The U.S. patent office
also employs people to perform the job of categorizing
patents. People make careers of categorizing publica-
tions into the Dewey Decimal system. In contrast, we
automate this process with learned text classifiers.

4.1 Seeding Naive Bayes using Keywords

One method of classifying documents into a hierarchy
is to match them against the keywords: for each docu-
ment, step through the keywords, and place the docu-
ment in the category of the first keyword that matches.
If the keywords are carefully chosen, this method can
be surprisingly accurate. However, finding enough key-
words to obtain broad coverage and finding sufficiently
specific keywords to obtain high accuracy can be dif-
ficult; it requires intimate knowledge of the data and
a lot of trial and error. Without this extensive effort,
keyword matching will be brittle, incapable of finding
documents that do not contain the specific list of words
to match.

A less brittle approach is provided by naive Bayes,
an established text classification algorithm (Lewis
1998; McCallum & Nigam 1998) based on Bayesian
techniques of machine learning. However, it requires
large amounts of labeled training data to work well.
Traditionally, training data is labeled by a human, and
is difficult and tedious to obtain.

We propose to combine these two approaches by us-
ing keyword-matching as a method of inexpensively
obtaining imperfectly-labeled documents, and then us-
ing these documents as training data for a naive Bayes
classifier. In this case, naive Bayes acts to smooth the
brittleness of the original keywords. One way to under-
stand this is that naive Bayes discovers new keywords
that are probabilistically correlated with the original
keywords.

Unfortunately, even with the training data provided
by keyword-matching, naive Bayes can still suffer from
sparseness in the training data. We overcome this
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problem by combining naive Bayes with a powerful
technique from statistics called shrinkage. The re-
sulting method provides classification accuracy that is
higher than keyword matching. We also discuss prelim-
inary results indicating strong promise for further im-
provement by adding a third technique: Expectation-
Maximization with unlabeled data.

4.2 Naive Bayes Text Classification

Naive Bayes approaches the task of text classification
from a Bayesian learning framework. It assumes that
text data is generated by a parametric model, and uses
training data to calculate estimates of the model pa-
rameters. Equipped with these estimates, it classifies
new test documents using Bayes’ rule to turn the gen-
erative model around and calculate the posterior prob-
ability that each class would have generated the test
document in question.

The classifier parameterizes each class separately
with a document frequency, and also word frequencies.
Each class, c¢j, has a document frequency relative to
all other classes, written P(c;). Each class is modeled
by a multinomial over words. That is, for every word,
wy, in the vocabulary, V, P(w¢|c;) indicates the fre-
quency that the classifier expects word w; to occur in
documents in class c;.

We represent a document, d;, as an unordered collec-
tion of its words. To classify a new document with this
model, we make the naive Bayes assumption: that the
words in the document occur independently of each
other given the class of the document, (and further-
more independently of position). Using this assump-
tion, classification becomes straightforward. We calcu-
late the probability of each class, given the evidence of
the document, P(c;|d;), and select the class for which
this expression is the maximum. We denote wg,, to be
the kth word in document d. We expand P(c;|d;) with
an application of Bayes’ rule, and then make use of the
word independence assumption:

P(ejldi) o< P(cj)P(dilcy)
di|

x P(cj) H P(wa,,
k=1

¢)- (3)

Learning these parameters (P(c;) and P(w¢|c;)) for
classification is accomplished using a set of labeled
training documents, D. To estimate the word prob-
ability parameters, P(w¢|c;), we count over all word
occurrences for class ¢; the frequency that w; occurs in
documents from that class. We supplement this with
Laplace ‘smoothing’ that primes each estimate with
a count of one to avoid probabilities of zero. Define
N (wy, d;) to be the count of the number of times word

wy occurs in document d;, and define P(¢;|d;) € {0,1},
as given by the document’s class label. Then, the esti-
mate of the probability of word w; in class c; is:

— 1+ ZdiG'D N(wt7 dz)P(C]|dz)
VI+ SV S op N(ws, di)P(c;lds)

The class frequency parameters are set in the same
way, where |C| indicates the number of classes:

1+Zd,-eDP(Cj|di) (5)
ICl+ D]
Empirically, when given a large number of training
documents, naive Bayes does a good job of classifying
text documents (Lewis 1998). More complete presenta-

tions of naive Bayes for text classification are provided
by Mitchell (1997) and Nigam et al. (1999).

P(wt|c))

P(cj) =

4.3 Shrinkage and Naive Bayes

When naive Bayes is not provided with sufficient train-
ing data, the parameters for word probability estimates
will be poor. We now describe shrinkage—a method for
improving these estimates by taking advantage of the
hierarchy. In our hierarchical setting, consider trying
to estimate the probability of the word “intelligence” in
the class NLP. Clearly this is a word that should have
non-negligible probability in NLP. However, when the
amount of training data is small, we may be unlucky
and the observed frequency of “intelligence” may be
very far from its true value. However, one level up in
the hierarchy, the Artificial Intelligence class contains
all the NLP documents, plus many more somewhat
related ones. Here, the probability of the word “in-
telligence” may be reliably estimated. This estimate,
while related, is not the true estimate for the NLP class.
Shrinkage uses a weighted average of estimates along
an entire path from a leaf to the root, where leaf-level
estimates are the most specific, but unreliable, and the
highest-level estimates are the most reliable, but un-
specific. We can calculate mixture weights guaranteed
to maximize the likelihood of held-out data by an iter-
ative re-calculation process for the weights.

More formally, let {P'(w¢|c;),...,P*(wile;)} be k
such estimates, where P'(wy|c;) is the estimate us-
ing training data just in the leaf, P*~1(w|c;) is the
estimate at the root using all the training data, and
Pk (wy]e;) is the uniform estimate (P*(w¢|c;) = 1/|V]).
The interpolation weights among the ancestors of class
c; are written {A}, A3,..., AF}, where Zle A =1.

We write P(w;|c;) for the new estimate of the class-
conditioned word probabilities based on shrinkage.
The new estimate for the probability of word w; given
class ¢; is just the weighted average of the estimates
along the path to the root of the hierarchy:
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f’(wt|cj) = /\}Pl(wt\c]’) +...+/\§Pk(wt\cj). (6)

Given a set of parameter estimates along the path
from a leaf to the root, how do we decide on the weights
for performing the weighted average? The mixture
weights, )\j- are set such that they maximize the likeli-
hood of some previously unseen “held-out” data by
using EM (Dempster, Laird, & Rubin 1977). This
method straightforwardly calculates such weights for
each leaf class, ¢;, using the following iterative proce-
dure:

First, for each class ¢;j, sum, (over each word in the
held-out data), the likelihood that it was generated by
the ith ancestor. Call this sum f:

Bi= Y NPU(wle)Peld).  (7)

wy €d; €D

Then, normalize all the §;’s (on a path from a leaf
node to the root) such that they sum to one. Then, set
the new value of each )\j- to its corresponding normal-
ized 6}3, and iterate until the A’s converge to a stable
value, usually in less than a dozen iterations.

A more complete description of hierarchical shrink-
age for text classification is presented by McCallum et
al. (1998). Carlin & Louis (1996) present a introduc-
tion and summary of general shrinkage.

The experimental results reported in the next section
use a special shrinkage model with an extra degree of
freedom: the EM procedure is used not only to set the
mixture weights A, but also to redistribute the word
data up and down the hierarchy. Space limitations
prevent a full explanation here, but details are given
by Hofmann & Puzicha (1998).

4.4 Experimental Results

Now we describe results of classifying computer science
research papers into the 51-leaf hierarchy mentioned
above. A test set was created by taking a random
sample of 250 research papers from the 33,000 papers
currently in the Cora archive. These 250 papers were
then categorized into the leaves of the topic hierarchy
by hand. Forty of them did not fit into any of the
leaves, and were discarded—resulting in a 205 docu-
ment test set. Keyword matching was applied to the
documents remaining in the archive, and, by taking the
top 40 matches per leaf (as measured by our informa-
tion retrieval engine) 4,631 documents with matches
were found. In these experiments, we used only the
title, author, institution, and abstracts of papers, and
not the full text of the paper.

The keyword-matching method obtained a surpris-
ingly good 66% accuracy. If we were not working in a

domain with which we already have much expertise, we
expect that good keywords would be more elusive, and
that reduced accuracy would result. Traditional naive
Bayes, when trained on these imperfectly-labeled doc-
uments receives a reduced accuracy of 62%. Here, the
median number of these short training documents is
only 100 per class, which is quite small for estimat-
ing the parameters of a multinomial with a vocabu-
lary size of 58079. The fact that data sparseness lim-
its accuracy here is confirmed by the increased perfor-
mance of shrinkage. Tt achieves 70% accuracy, provid-
ing our highest accuracy yet. A beneficial feature of
shrinkage is that as the hierarchy becomes wider and
deeper, shrinkage should improve relative performance
even more strongly because fragmentation will cause
per-class data to be even more sparse, and because
there will be more nodes in the hierarchy from which
to “borrow strength.”

Another interesting source of extra training data is
completely unlabeled data documents that were not
matched by any of the keywords. In past work (Nigam
et al. 1999) we show that text classification accuracy
can be dramatically increased by augmenting a small
set of labeled data with a large pool of unlabeled data.
EM is used to probabilistically fill in the “missing”
class labels. We have recently performed a preliminary
experiment showing that this technique holds promise
for the Cora classification task. We randomly selected
464 out of the 4631 keyword-labeled documents. When
these are used to train traditional naive Bayes, it ob-
tains 29% accuracy. The application of shrinkage in-
creases accuracy to 47%. Then, interestingly, incor-
porating the remaining 4167 documents as unlabeled
data brings accuracy up to an impressive 56%. In up-
coming work we will perform experiments applying this
technique to large quantities of the 33,000 Cora docu-
ments.

5 Information Extraction

Information extraction is concerned with identifying
phrases of interest in textual data. For many applica-
tions, extracting items such as names, places, events,
dates, and prices is a powerful way to summarize the
information relevant to a user’s needs. In the case of
a domain-specific search engine, the automatic extrac-
tion of information specific to the domain of interest
can increase the accuracy and efficiency of a directed
search.

We have investigated techniques for extracting the
fields relevant to research papers, such as title, author,
journal and publication date. The extracted fields
are used to allow searches over specific fields, to pro-
vide useful effective presentation of search results (e.g.
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showing title in bold), and to match references to pa-
pers, in order to display links to papers referenced by
the current paper, and papers that reference the cur-

rent, paper.

5.1 Hidden Markov Models

Our information extraction approach is based on hid-
den Markov models (HMMs) and their accompanying
search techniques that are so widely used for speech
recognition and part-of-speech tagging (Rabiner 1989;
Charniak 1993). Discrete output, first-order hidden
Markov models are composed of a set of states (), with
specified initial and final states gq; and g, a set of tran-
sitions between states (¢ — ¢'), and a discrete alphabet
of output symbols ¥ = 0105 ...0. The model gener-
ates strings * = z129 ... x; by beginning in the initial
state, transitioning to new state, emitting an output
symbol, transitioning to another state, emitting an-
other symbol, and so on, until a transition is made into
the final state. The parameters of the model are the
transition probabilities P(¢ — ¢') that one state fol-
lows another and the emission probabilities P(q 1 o)
that a state emits a particular output symbol. The
probability of a string x being emitted by an HMM M
is computed by:

I+1

> TI PGk = an)Plax t i), (8)

a1, €Q k=1

P(z|M) =

where ¢p and g4 are restricted to be ¢ and gp respec-
tively, and x; 41 is an end-of-string token. The observ-
able output of the system is the sequence of symbols
that the states emit, but the underlying state sequence
itself is hidden. One common goal of learning prob-
lems that use HMMs is to recover the state sequence
V(z|M) that has the highest probability of having pro-
duced an observation sequence:

1+1
V(x|M)=argmax [[ P(g1 = a)P(qr T 2). (9)

@ EQ! k=1

Fortunately, there is an efficient algorithm, called the
Viterbi algorithm (Viterbi 1967), that efficiently recov-
ers this state sequence.

HMMs may be used for information extraction from
research papers by formulating a model in the following
way: each state is associated with a field class that we
want to extract, such as title, author, institution, etc.
Each state emits words from a class-specific unigram
distribution. In order to label classes from new text, we
treat the words from the new text as observations and
use the Viterbi algorithm to recover the most-likely

state sequence. Any words in the Viterbi path pro-
duced by the “title” state are labeled as title words,
and so on. We can learn the class-specific unigram dis-
tributions and the transition probabilities from data.
In our case, we collected BibTeX files from the Web
with reference classes explicitly labeled, and used the
text from each class as training data for the appro-
priate unigram model. Transitions between states are
estimated directly from a labeled training set.

HMMs have been used in other systems for infor-
mation extraction and the closely related problems of
topic detection and text segmentation. Leek (1997)
uses hidden Markov models to extract information
about gene names and locations from scientific ab-
stracts. The Nymble system (Bikel et al. 1997) deals
with named-entity extraction, and a system by Yam-
ron et al. (1998) uses an HMM for topic detection and
tracking. Our approach to information extraction is
similar to wrapper induction (Knoblock et al. 1998;
Kushmerick 1997).

5.2 Experiments

In order to investigate the modeling potential of HMMs
for information extraction from research papers, we
conducted the following set of experiments on reference
extraction. Five hundred references were selected at
random from a set of 500 research papers. The words
in each of the 500 references were manually tagged with
one of the following 13 classes: title, author, insti-
tution, location, note, editor, publisher, date, pages,
volume, journal, booktitle, and technical report. The
tagged references were split into a 300-instance, 6995
word token training set and a 200-instance, 4479 word
token test set. Unigram language models were built
for each of the thirteen classes from almost 2 million
words of BibTeX data acquired from the Web. The
unigram models were based on a vocabulary of 44,000
words, and were smoothed using absolute discounting
(Ney, Essen, & Kneser 1994). For all of the models we
considered, every state was always associated with one
class label, and used the appropriate unigram distri-
bution to provide its emission probabilities. Emission
distributions were never re-estimated during the train-
ing process.

Four increasingly sophisticated modeling techniques
were investigated, all using the labels provided in the
training data. Techniques to derive HMMs that do not
rely on labeled training data are discussed below, and
results using these techniques are forthcoming.

The first experiment was to create a fully-connected
HMM (HMM-0) where each class was represented by
a single state. The outgoing transitions for each state
were given equal probability. Finding the most likely

www.manaraa.com



0.857

0.821

1.000

start author 0179

0625 @

Figure 5: HMM built from only five labeled references after merging neighbors and collapsing V-neighbors in the forward
and backward directions. Note that the structure is close to many reference section formats.

path through this model for an observation sequence is
equivalent to consulting each unigram model for each
test set word, and setting each word’s class to the class
of the unigram model that produces the highest prob-
ability.

Second, another fully connected HMM (HMM-1)
was built with one state per class, except that the tran-
sition probabilities were estimated from the labeled
training data. In this case, the transition parameters
were set to the maximum likelihood estimates deter-
mined by counting the transitions in the 300 tagged
training references, plus a smoothing count of 1 which
was added to all transitions to avoid non-zero proba-
bilities.

Next, an HMM was built directly from the class la-
bels of the tagged training references. Each word token
in the training set, represented by its class label, was
assigned a single state that only transitioned to the
state that followed it. From the initial state, there were
300 equiprobable transitions into sequences of states,
where each sequence represented the tags for one of the
300 training references. This model consisted of 6997
states, and was maximally specific in that its transi-
tions exactly explained the training data.

This maximally specific HMM was put through a se-
ries of state merges in order to generalize the model.
First, “neighbor merging” combined all states that
shared a unique transition and had the same class la-
bel. For example, all adjacent title states for one ref-
erence are merged into one title state, representing the
sequence of title words for that reference. As two states
were merged, transition counts were preserved, so that
a self-loop was introduced on the new merged state. As
multiple neighbor states with the same class label were
merged into one, the self-transition loop probability in-
creased, and represented the expected state duration
for that class. After neighbor merging, the maximally

specific HMM was reduced from 6997 states to 1677
states (HMM-2).

Next, the neighbor-merged HMM was put through
forward and backward V-merging. For V merging, any
two states that share transitions from or to a common
state and have the same label are merged. An example
of an HMM built from just 5 tagged references after
V-merging is shown in Figure 5%. Notice that even
with just five references, the model closely matches the
formats found in many reference sections. After V-
merging, the HMM was reduced from 1677 states to
46 states (HMM-3).

All four HMM models were used to tag the 200 test
references by finding the Viterbi path through each
HMM for each reference. The class labels of the states
in the Viterbi path are the classifications assigned to
each word in the test references. Word classification ac-
curacy results for two testing scenarios are reported in
Table 1. In the ‘Any word’ case, state transitions were
allowed to occur after any observation word. In the
‘Punc word’ case, state transitions to a new state (with
a different class label) were only allowed to occur after
observations ending in punctuation. In many format
styles, punctuation is a standard delimiter for fields.
For HMM-0, allowing transitions only after words with
punctuation greatly increases classification accuracy,
since in this case punctuation-delimited phrases are
being classified instead of individual words. For the
last three cases, the overall classification accuracy is
quite high. The V-merged HMM derived directly from
the training data (HMM-3) performs at 93% accuracy,
as well as the deterministic HMM where only one state
was allowed per class (HMM-1). For these three cases,
limiting state transitions to occur only after words with

3The HMM Graph
was produced with AT&T’s graphviz package, available at
http://www.research.att.com/sw/tools/graphviz/
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Accuracy
Model # states | Any word | Punc word
HMM-0 13 59.2 80.8
HMM-1 13 91.5 92.9
HMM-2 1677 90.2 91.1
HMM-3 46 91.7 92.9

Table 1: Word classification accuracy results (%) on 200
test references (4479 words).

punctuation improved accuracy by about 1% absolute.

5.3 Future Work

All of the experiments presented above used HMMs
where the model structure and parameters were esti-
mated directly from labeled training instances. In the
near future, we will begin using model estimation tech-
niques that do not rely on labeled training examples
to induce a model. Using unlabeled data is preferable
to labeled data because generally greater quantities of
unlabeled data are available, and model parameters
may be more reliably estimated from larger amounts
of training data. Additionally, manually labeling large
amounts of training data can be costly and error-prone.

Specifically, if we are willing to fix the model size and
structure, we can use the Baum-Welch estimation tech-
nique (Baum 1972) to estimate model parameters. The
Baum-Welch method is an Expectation-Maximization
procedure for HMMs that finds local likelihood max-
ima, and is used extensively for acoustic model estima-
tion in automatic speech recognition systems.

We can also remove the assumption of a fixed model
size and estimate the model size, structure and pa-
rameters directly from the data using Bayesian Model
Merging (Stolcke 1994). Bayesian Model Merging in-
volves starting out with a maximally specific hidden
Markov model, where each training observation is rep-
resented by a single state. Pairs of states are iteratively
merged, generalizing the model until an optimal trade-
off between fit to the training data and a preference
for smaller, more generalized models is attained. This
merging process can be explained in Bayesian terms by
considering that each merging step is looking to find
the model that maximizes the posterior probability of
the model given the training data.

We will test both of these induction methods on ref-
erence extraction, and will include new experiments on
header extraction. We believe that extracting informa-
tion from headers will be a more challenging problem
than references because there is less of an established
format for presenting information in the header of a

paper.

6 Related Work

Several related research projects are investigating the
automatic construction of special-purpose web sites.
Perhaps the most related is the New Zealand Digital
Library project (Witten et al. 1998), which has cre-
ated publicly-available search engines for domains from
computer science technical reports to song melodies.
The emphasis of this project is on the creation of full-
text searchable digital libraries, and not on underlying
machine learning technology. The web sources for their
libraries are manually identified. No high-level organi-
zation of the information is given. No information ex-
traction is performed and, for the paper repositories,
no citation linking is provided.

The WebKB project (Craven et al. 1998) is an ef-
fort to extract domain-specific information available on
the Web into a knowledge base. This project also has a
strong emphasis on using machine learning techniques,
including text classification and information extrac-
tion, to promote easy re-use across domains. Two
example domains, computer science departments and
companies, have been developed. No searching facili-
ties are provided over the extracted knowledge bases.

The CiteSeer project (Bollacker, Lawrence, & Giles
1998) has also developed an internal search engine for
computer science research papers. It provides simi-
lar functionality for searching and linking of research
papers. It does not provide information extraction of
papers and references, or a hierarchy of the field. The
CiteSeer project is aimed at reproducing a citation in-
dex, and thus focuses more on domain-specific imple-
mentation aspects for research papers, and not as much
on automating the general construction of search en-
gines with machine learning techniques.

The WHIRL project (Cohen 1998) is an effort to
integrate a variety of topic-specific sources into a sin-
gle domain-specific search engine. Information is ex-
tracted from web pages by simple hand-written extrac-
tion patterns that are customized for each web source.
The emphasis is on providing fuzzy matching for in-
formation retrieval searching. Two demonstration do-
mains of computer games and North American birds
integrate information from tens of web sites each.

7 Conclusions and Future Work

The amount of information available on the Internet
continues to grow exponentially. As this trend con-
tinues, we argue that, not only will the public need
powerful tools to help them sort though this informa-
tion, but the creators of these tools will need intelligent
techniques to help them build and maintain the tools.
This paper has shown that machine learning techniques
can significantly aid the creation and maintenance of
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domain-specific search engines. We have presented re-
search in reinforcement learning, text classification and
information extraction towards this end.

Much future work in each machine learning area has
already been discussed. However, we also see many
other areas where machine learning can further au-
tomate the construction and maintenance of domain-
specific search engines. For example, text classification
can decide which documents on the Web are relevant
to the domain. Unsupervised clustering can automat-
ically create a topic hierarchy and generate keywords.
Collaborative filtering and information retrieval can
generate a user-specific recommended reading list. We
anticipate developing a suite of many machine learning
techniques so domain-specific search engine creation
can be accomplished quickly and easily.
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