
www.manaraa.com

Building Domain-Speci�c Search Engines withMachine Learning TechniquesAndrew McCallumzymccallum@justresearch.com Kamal Nigamyknigam@cs.cmu.edu Jason Rennieyjr6b@andrew.cmu.edu Kristie Seymoreykseymore@ri.cmu.eduzJust Research4616 Henry StreetPittsburgh, PA 15213 ySchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractDomain-speci�c search engines are becoming in-creasingly popular because they o�er increased ac-curacy and extra features not possible with thegeneral, Web-wide search engines. For example,www.campsearch.com allows complex queries by age-group, size, location and cost over summer camps. Un-fortunately, these domain-speci�c search engines aredi�cult and time consuming to maintain. This pa-per proposes the use of machine learning techniquesto greatly automate the creation and maintenance ofdomain-speci�c search engines. We describe new re-search in reinforcement learning, text classi�cationand information extraction that automates e�cientspidering, populating topic hierarchies, and identify-ing informative text segments. Using these techniques,we have built a demonstration system: a search enginefor computer science research papers. It already con-tains over 33,000 papers and is publicly available atwww.cora.jprc.com.1 IntroductionAs the amount of information on the World WideWeb grows, it becomes increasingly di�cult to �ndjust what we want. While general-purpose search en-gines, such as Altavista and HotBot o�er high coverage,they often provide only low precision, even for detailedqueries.When we know that we want information of a certaintype, or on a certain topic, a domain-speci�c searchengine can be a powerful tool. For example:� www.campsearch.com allows the user to search forsummer camps for children and adults. The usercan query the system based on geographic location,cost, duration and other requirements.� www.netpart.com lets the user search over companypages by hostname, company name, and location.� www.mrqe.com allows the user to search for reviewsof movies. Type a movie title, and it provides links

to relevant reviews from newspapers, magazines, andindividuals from all over the world.� www.maths.usyd.edu.au:8000/MathSearch.html letsthe user search web pages about mathematics.� www.travel-�nder.com allows the user to search webpages about travel, with special facilities for search-ing by activity, category and location.Performing any of these searches with a traditional,general-purpose search engine would be extremely te-dious or impossible. For this reason, domain-speci�csearch engines are becoming increasingly popular. Un-fortunately, however, building these search engines is alabor-intensive process, typically requiring signi�cantand ongoing human e�ort.This paper describes the Ra Project|an e�ort toautomate many aspects of creating and maintainingdomain-speci�c search engines by using machine learn-ing techniques. These techniques allow search enginesto be created quickly with minimal e�ort and are suitedfor re-use across many domains. This paper presentsthe automation of three di�erent aspects of search en-gine creation, using reinforcement learning, text clas-si�cation and information extraction.Every search engine must begin with a collection ofdocuments to index. A spider (or \crawler") is anagent that traverses the Web, looking for documentsto add to the search engine. When aiming to populatea domain-speci�c search engine, the spider need not ex-plore the Web indiscriminantly, but should explore in adirected fashion in order to �nd domain-relevant docu-ments e�ciently. We frame the spidering task in a rein-forcement learning framework (Kaelbling, Littman, &Moore 1996), allowing us to precisely and mathemat-ically de�ne \optimal behavior." This approach pro-vides guidance for designing an intelligent spider thataims to select hyperlinks optimally. Our preliminaryexperimental results show that a simple reinforcement

www.manaraa.com

learning spider is nearly three times more e�cient thana spider with a breadth-�rst search strategy.Search engines often provide a hierarchical organiza-tion of materials into relevant topics; Yahoo is the pro-totypical example. Automatically adding documentsinto a topic hierarchy can be framed as a text classi-�cation task. We present extensions to a probabilis-tic text classi�er known as naive Bayes (Lewis 1998;McCallum & Nigam 1998) that succeed in this taskwithout requiring large sets of labeled training data.The extensions reduce the need for human e�ort intraining the classi�er by (1) using the results of key-word matching to obtain training data with approxi-mate class labels, and (2) performing robust parameterestimation in the face of sparse data by using a statis-tical technique called shrinkage that takes advantageof the hierarchy. Use of the resulting algorithms placesdocuments into a 51-leaf computer science hierarchywith 70% accuracy|a �gure we believe is not far be-low human disagreement. We also present preliminaryresults indicating that we can increase accuracy evenfurther by augmenting the labeled training data witha large pool of unlabeled data, and integrating the twousing Expectation-Maximization (Dempster, Laird, &Rubin 1977).Extracting characteristic pieces of information fromthe documents of a domain-speci�c search engine al-lows the user to search over these features in a waythat general search engines cannot. Information ex-traction, the process of automatically �nding speci�ctextual substrings in a document, is well suited to thistask. We approach information extraction with tech-niques from statistical language modeling and speechrecognition, namely hidden Markov models (Rabiner1989). Our initial algorithm extracts the title, authors,institution, journal name, etc., from research paper ref-erence sections with 93% accuracy.2 The Cora Search EngineWe have brought all the above-described machinelearning techniques together in a demonstration sys-tem: a domain-speci�c search engine on computer sci-ence research papers named Cora. The system is pub-licly available at www.cora.jprc.com. Not only doesit provide phrase and keyword search facilities over33,000 collected papers, it also places these papersinto a computer science topic hierarchy, maps theweb of citations between papers, and provides bibli-ographic information about each paper. Our hope isthat, in addition to providing a platform for testingmachine learning research, this search engine will be-come a valuable tool for other computer scientists|complementing similar e�orts, such as the Computing

Research Repository (xxx.lanl.gov/archive/cs), by pro-viding functionality and coverage not available onlineelsewhere.The construction of a search engine can be decom-posed into three functional stages: collecting new in-formation, collating and extracting from that informa-tion, and presenting it in a publicly-available web in-terface. Cora implements each stage by drawing uponmachine learning techniques described in this paper.The �rst stage is the collection of computer scienceresearch papers. A spider crawls the Web, startingfrom the home pages of computer science departmentsand laboratories. Using reinforcement learning, it e�-ciently explores the Web, collecting all postscript doc-uments it �nds. Nearly all computer science papersare in postscript format, though we are adding moreformats, such as PDF. If the document can be reli-ably determined to have the format of a research paper(e.g. by having Abstract and Reference sections), it isadded to the repository. The ASCII text is extractedfrom the postscript document. Using this system, wehave found 33,000 computer science research papers,and are continuing to spider for even more.The second stage of building a search engine is toextract relevant knowledge from each paper. To thisend, the beginning of each paper (up to the abstract)is passed through an information extraction systemthat automatically �nds the title, author, institutionand other important header information. Additionally,the bibliography section of each paper is located, indi-vidual references identi�ed, and each reference brokendown into the appropriate �elds, such as author, title,journal, date, etc. Using this extracted information,reference and paper matches are made|grouping allcitations to the same paper together, and matching ci-tations to papers from the repository. Of course, manypapers that are cited do not appear in the repository.This matching procedure is similar to one used by Cite-Seer (Bollacker, Lawrence, & Giles 1998), except thatwe use additional �eld-level constraints provided byknowing, for example, the title and authors of eachpaper.The third stage is to provide a publicly-available userinterface. We have implemented two methods for �nd-ing papers. First, a search engine over all the papers isprovided. It supports commonly-used searching syn-tax for queries, including +, -, and phrase searchingwith "", and ranks resulting matches by the weightedlog of term frequency, summed over all query terms. Italso allows searches restricted to extracted �elds, suchas authors and titles. Query response time is usuallyless than a second. The results of search queries arepresented as in Figure 1. Additionally, each individual

www.manaraa.com

Figure 1: A screen shot of the query results page of theCora search engine (www.cora.jprc.com). Note that papertitles, authors and abstracts are provided at this level.paper has a \details page" that shows all the relevantinformation, such as title and authors, links to the ac-tual postscript paper, and a citation map that can betraversed either forwards or backwards. One exampleof this is shown in Figure 2. We also provide auto-matically constructed BibTeX entries, general Cora in-formation links, and a mechanism for submitting newpapers and web sites for spidering.The other user interface access method is through atopic hierarchy, similar to that provided by Yahoo, butcustomized speci�cally for computer science research.This hierarchy was hand-constructed, and contains 51leaves, varying in depth from one to three. Each leafnode in the hierarchy is seeded with just a few key-words, and from these keywords a robust, hierarchi-cal naive Bayes classi�er is built. Using the classi�er,each research paper is automatically placed into a topicnode. By following hyperlinks to traverse the topic hi-erarchy, the most-cited papers in each research topiccan be found.3 E�cient SpideringSpiders are agents that explore the hyperlink graph ofthe Web, often for the purpose of �nding documentswith which to populate a search engine. Extensive spi-dering is the key to obtaining high coverage by themajor Web search engines, such as AltaVista and Hot-Bot. Since the goal of these general-purpose search

Figure 2: A screen shot of a details page of the Cora searchengine. At this level, all extracted information about apaper is displayed, including the citation linking, which arehyperlinks to other details pages.engines is to provide search capabilities over the Webas a whole, for the most part they simply aim to �ndas many distinct web pages as possible. Such a goallends itself to strategies like breadth-�rst search. If,on the other hand, the task is to populate a domain-speci�c search engine, then an intelligent spider shouldtry to avoid hyperlinks that lead to o�-topic areas, andconcentrate on links that lead to documents of interest.In Cora, e�cient spidering is a major concern.The majority of the pages in many computer sci-ence department web sites do not contain links to re-search papers, but instead are about courses, home-work, schedules and admissions information. Avoid-ing whole branches and neighborhoods of departmen-tal web graphs can signi�cantly improve e�ciency andincrease the number of research papers found given a�nite amount of crawling time. We use reinforcementlearning to perform e�cient spidering.Several other systems have also studied e�cientinformation gathering from the Web. Arachnid(Menczer 1997) maintains a collection of competitive,reproducing and mutating agents for �nding informa-tion on the Web. WebWatcher (Joachims, Freitag,& Mitchell 1997) is a browsing assistant that helps auser �nd information by recommending which hyper-links to take next using reinforcement learning. Cho,Garcia-Molina, & Page (1998) suggest a number of

www.manaraa.com

heuristic ordering metrics for choosing which link tocrawl next when searching for certain categories of webpages. Laser uses reinforcement learning to tune thesearch parameters of a search engine (Boyan, Freitag,& Joachims 1996).3.1 Reinforcement LearningIn machine learning, the term \reinforcement learn-ing" refers to a framework for learning optimal deci-sion making from rewards or punishment (Kaelbling,Littman, & Moore 1996). It di�ers from supervisedlearning in that the learner is never told the correctaction for a particular state, but is simply told howgood or bad the selected action was, expressed in theform of a scalar \reward."A task is de�ned by a set of states, s 2 S, a setof actions, a 2 A, a state-action transition function,T : S�A ! S, and a reward function, R : S�A ! <.At each time step, the learner (also called the agent)selects an action, and then as a result is given a rewardand its new state. The goal of reinforcement learningis to learn a policy, a mapping from states to actions,� : S ! A, that maximizes the sum of its reward overtime. The most common formulation of \reward overtime" is a discounted sum of rewards into an in�nitefuture. A discount factor, ; 0 � < 1, expresses\ination," making sooner rewards more valuable thanlater rewards. Accordingly, when following policy �,we can de�ne the value of each state to be:V �(s) = 1Xt=0 trt; (1)where rt is the reward received t time steps after start-ing in state s.1 The optimal policy, written �?, is theone that maximizes the value, V �(s), for all states s.In order to learn the optimal policy, we learn itsvalue function, V ?, and its more speci�c correlate,called Q. Let Q?(s; a) be the value of selecting actiona from state s, and thereafter following the optimalpolicy. This is expressed as:Q?(s; a) = R(s; a) + V ?(T (s; a)): (2)We can now de�ne the optimal policy in terms of Qby selecting from each state the action with the high-est expected future reward: �?(s) = argmaxaQ?(s; a).The seminal work by Bellman (1957) shows that theoptimal policy can be straightforwardly found by dy-namic programming.1In preliminary experiments currently reported we re-strict = 0; experiments in progress are using delayedrewards.

3.2 Spidering as Reinforcement LearningAs an aid to understanding how reinforcement learn-ing relates to spidering, consider the common reinforce-ment learning task of a mouse exploring a maze to �ndseveral pieces of cheese. The agent's actions are mov-ing among the grid squares of the maze. The agentreceives a reward for �nding each piece of cheese. Thestate is the position of the mouse and the locationsof the cheese pieces remaining to be consumed (sincethe cheese can only be consumed and provide rewardonce). Note that the agent only receives immediate re-ward for �nding a maze square containing cheese, butthat in order to act optimally it must choose actionsconsidering future rewards as well.In the spidering task, the on-topic documents areimmediate rewards, like the pieces of cheese. The ac-tions are following a particular hyperlink. The stateis the locations of the on-topic documents remainingto be consumed. The state does not include the cur-rent \position" of the agent since a crawler can go toany URL next. The number of actions is large anddynamic, in that it depends on which documents thespider has visited so far.The key features of topic-speci�c spidering thatmake reinforcement learning the proper framework forde�ning the optimal solution are: (1) performance ismeasured in terms of reward over time, and (2) theenvironment presents situations with delayed reward.3.3 Practical ApproximationsThe problem now is how to apply reinforcement learn-ing to spidering in such a way that it can be practicallysolved. Unfortunately, the state space is huge: two tothe power of the number of on-topic documents on theWeb. The action space is also large: the number ofunique URLs with incoming links on the Web. Thus weneed to make some simplifying assumptions in order tomake the problem tractable and to aid generalization.Note, however, that by de�ning the exact solution interms of the optimal policy, and making our assump-tions explicit, we will better understand what inaccura-cies we have introduced, and how to select areas of fu-ture work that will improve performance further. Theassumptions we choose initially are the following two:(1) we assume that the state is independent of whichon-topic documents have already been consumed; thatis, we collapse all states into one, and (2) we assumethat the relevant distinctions between the actions canbe captured by the words in the neighborhood of thehyperlink corresponding to each action; more speci�-cally, we begin by assuming that the value of an actionis a function of the unordered list of words in the an-chor text of the hyperlink.

www.manaraa.com

Thus our Q function becomes a mapping froma \bag-of-words" to a scalar (sum of future re-ward). Learning to perform e�cient spidering then in-volves only two remaining sub-problems: (1) gatheringtraining data consisting of bag-of-words/future-rewardpairs, and (2) learning a mapping using the trainingdata.There are several choices for how to gather train-ing data. Although the agent could straightforwardlylearn from experience on-line, we currently train theagent o�-line, using collections of already-found docu-ments and hyperlinks. In the vocabulary of traditionalreinforcement learning, this means that the state tran-sition function, T , and the reward function, R, areknown, and we learn the Q function by dynamic pro-gramming in the original, uncollapsed state space.We represent the mapping using a collection of naiveBayes text classi�ers (see Section 4.2). We perform themapping by casting this regression problem as classi-�cation (Torgo & Gama 1997). We discretize the dis-counted sum of future reward values of our trainingdata into ten bins, place the hyperlinks into the bincorresponding to their Q values as calculated above,and use the hyperlinks' text as training data for a naiveBayes text classi�er. For the anchor text of each hyper-link, we calculate the probabilistic class membershipfor each bin. Then the reward value of a hyperlinkis set by taking a weighted average of each bins' re-ward value, using the probabilistic class membershipsas weights.3.4 Data and Experimental ResultsIn August 1998 we completely mapped the docu-ments and hyperlinks of the web sites of computer sci-ence departments at Brown University, Cornell Univer-sity, University of Pittsburgh and University of Texas.They include 53,012 documents and 592,216 hyper-links. We perform a series of four test/train splits,in which the data from three universities was used totrain a spider that then is tested on the fourth. Thetarget pages (for which a reward of 1 is given) are com-puter science research papers.2The value of all the hyperlinks is determined by �nd-ing all target pages, and propagating reward out alongthe incoming hyperlinks, with dynamic programming.Experiments with delayed reward are in progress. Wecurrently report results with immediate reward only,where = 0. This assignment results in the degen-erate case of dynamic programming where in the �rstand only iteration the value of a hyperlink is set to thenumber of target pages pointed to by the destination2They are identi�ed by a separate, simple hand-codedalgorithm that has very high precision.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 R
es

ea
rc

h
P

ap
er

s
F

ou
nd

Percent Hyperlinks Followed

Spidering CS Departments

Breadth-First Search
Reinforcement LearningFigure 3: The performance of reinforcement learning spi-dering versus traditional breadth-�rst search, averaged overfour test/train splits with data from four universities. Thevertical axis shows the percentage of on-topic documentsfound, while the horizontal axis shows the percentage ofhyperlinks followed thus far into the spider's exploration.The reinforcement learning spider �nds target documentssigni�cantly faster than the traditional method.of the hyperlink.A spider trained in this fashion is evaluated on eachtest/train split by having it spider the test univer-sity, and performance is compared with breadth-�rstsearch. Figure 3 plots the number of research papersfound over the course of all the pages visited, againaveraged over all four universities. Notice that at alltimes during its progress, the reinforcement learningspider has found more research papers than breadth-�rst search, and that its performance is especiallystrong in the beginning.One measure of performance is the number of hy-perlinks followed before 75% of the research papers arefound. Reinforcement learning performance is signi�-cantly more e�cient, requiring exploration of only 11%of the hyperlinks, in comparison to the breadth-�rstsearch's 30%. This represents nearly a factor of threeincrease in spidering e�ciency.3.5 Future WorkThe most important next step after these preliminaryresults is to relax some of the restrictive assumptionsmade thus far. Towards this goal, experiments aim toshow that representing delayed reward can further im-prove the e�ciency of a directed spider. We believethat there are many features that are not indicative ofimmediate reward but are predictive of future reward;following them should improve performance further.We are also studying enlarged feature sets to repre-sent a hyperlink for the purpose of the Q function:namely, we are working on using word neighborhoods,

www.manaraa.com

...

...

... ...

...
...

computer, university, science, system, paper

...

language
NLP

processing

Compiler
 Design
compiler

Garbage

garbage
collection

 Collection
Semantics
semantics
denotational

software
design
engineering

Software
 Engineering programming

Programming

language
logic

programs

OS
distributed
system
systems
network
time

learning

Artificial
 Intelligence

intelligence

Hardware &
 Architecture
circuits
design

HCI

multimedia

information
text

retrieval

Information
 Retrieval

classification

Cooperative

cscw
multimedia
Multimedia

interface

Interface
 Design

design

Planning

knowledge
representation

Knowledge
 Representation

tools
environments

construction
types optimization

memory

region

parallel
data
language

text
information

learning
 Learning
Machine

algorithms

networks

algorithm

university problems
plan
reasoning
temporal

language

natural
system

interfaces
sketch
user

group
provide
work

collaborative
real
time
data
media

computer
system

university
paper

performance
university
computer

based
computer
university

university

codelanguage
natural

planning

documents

Computer Science

Figure 4: A subset of Cora's topic hierarchy. Each node contains its title, and the �ve most probable words, as calculatedby naive Bayes and special shrinkage with vertical word redistribution. Several additional nodes in deeper layers of thehierarchy are not shown due to space limitations. Words that were not among the keywords for that class are indicated withitalics.headers, titles, and words from hyperlink-neighboringpages. Finally, we are also exploring methods that in-clude network latency in the optimization criteria, sothat fast web servers can be explored before slowerones.4 Classi�cation into a Topic HierarchyTopic hierarchies are an e�cient way to organize, viewand explore large quantities of information that wouldotherwise be cumbersome. The U.S. Patent database,Yahoo, MedLine and the Dewey Decimal system areall examples of topic hierarchies that are created tomake information more manageable.As Yahoo has shown, a topic hierarchy can be a use-ful, integral part of a search engine. Many search en-gines (e.g. Lycos, Excite, and HotBot) now displayhierarchies on their front page. This feature is equallyvaluable for domain-speci�c search engines. We havecreated a 51-leaf hierarchy of computer science top-ics for Cora, shown in part in Figure 3.5. Creatingthe hierarchy and selecting just a few keywords asso-ciated with each node took about three hours, duringwhich we examined conference proceedings, and ex-plored computer science sites on the Web.A much more di�cult and time-consuming part ofcreating a hierarchy is populating it with documentsthat are placed in the correct topic branches. Ya-hoo has hired large numbers of people to categorizeweb pages into their hierarchy. The U.S. patent o�cealso employs people to perform the job of categorizingpatents. People make careers of categorizing publica-tions into the Dewey Decimal system. In contrast, weautomate this process with learned text classi�ers.

4.1 Seeding Naive Bayes using KeywordsOne method of classifying documents into a hierarchyis to match them against the keywords: for each docu-ment, step through the keywords, and place the docu-ment in the category of the �rst keyword that matches.If the keywords are carefully chosen, this method canbe surprisingly accurate. However, �nding enough key-words to obtain broad coverage and �nding su�cientlyspeci�c keywords to obtain high accuracy can be dif-�cult; it requires intimate knowledge of the data anda lot of trial and error. Without this extensive e�ort,keyword matching will be brittle, incapable of �ndingdocuments that do not contain the speci�c list of wordsto match.A less brittle approach is provided by naive Bayes,an established text classi�cation algorithm (Lewis1998; McCallum & Nigam 1998) based on Bayesiantechniques of machine learning. However, it requireslarge amounts of labeled training data to work well.Traditionally, training data is labeled by a human, andis di�cult and tedious to obtain.We propose to combine these two approaches by us-ing keyword-matching as a method of inexpensivelyobtaining imperfectly-labeled documents, and then us-ing these documents as training data for a naive Bayesclassi�er. In this case, naive Bayes acts to smooth thebrittleness of the original keywords. One way to under-stand this is that naive Bayes discovers new keywordsthat are probabilistically correlated with the originalkeywords.Unfortunately, even with the training data providedby keyword-matching, naive Bayes can still su�er fromsparseness in the training data. We overcome this

www.manaraa.com

problem by combining naive Bayes with a powerfultechnique from statistics called shrinkage. The re-sulting method provides classi�cation accuracy that ishigher than keyword matching. We also discuss prelim-inary results indicating strong promise for further im-provement by adding a third technique: Expectation-Maximization with unlabeled data.4.2 Naive Bayes Text Classi�cationNaive Bayes approaches the task of text classi�cationfrom a Bayesian learning framework. It assumes thattext data is generated by a parametric model, and usestraining data to calculate estimates of the model pa-rameters. Equipped with these estimates, it classi�esnew test documents using Bayes' rule to turn the gen-erative model around and calculate the posterior prob-ability that each class would have generated the testdocument in question.The classi�er parameterizes each class separatelywith a document frequency, and also word frequencies.Each class, cj , has a document frequency relative toall other classes, written P(cj). Each class is modeledby a multinomial over words. That is, for every word,wt, in the vocabulary, V , P(wtjcj) indicates the fre-quency that the classi�er expects word wt to occur indocuments in class cj .We represent a document, di, as an unordered collec-tion of its words. To classify a new document with thismodel, we make the naive Bayes assumption: that thewords in the document occur independently of eachother given the class of the document, (and further-more independently of position). Using this assump-tion, classi�cation becomes straightforward. We calcu-late the probability of each class, given the evidence ofthe document, P(cj jdi), and select the class for whichthis expression is the maximum. We denote wdik to bethe kth word in document d. We expand P(cj jdi) withan application of Bayes' rule, and then make use of theword independence assumption:P(cj jdi) / P(cj)P(dijcj)/ P(cj) jdijYk=1P(wdik jcj): (3)Learning these parameters (P(cj) and P(wtjcj)) forclassi�cation is accomplished using a set of labeledtraining documents, D. To estimate the word prob-ability parameters, P(wtjcj), we count over all wordoccurrences for class cj the frequency that wt occurs indocuments from that class. We supplement this withLaplace `smoothing' that primes each estimate witha count of one to avoid probabilities of zero. De�neN(wt; di) to be the count of the number of times word

wt occurs in document di, and de�ne P(cj jdi) 2 f0; 1g,as given by the document's class label. Then, the esti-mate of the probability of word wt in class cj is:P(wtjcj)= 1 +Pdi2DN(wt; di)P(cj jdi)jV j+PjV js=1Pdi2DN(ws; di)P(cj jdi) : (4)The class frequency parameters are set in the sameway, where jCj indicates the number of classes:P(cj) = 1 +Pdi2D P(cj jdi)jCj+ jDj : (5)Empirically, when given a large number of trainingdocuments, naive Bayes does a good job of classifyingtext documents (Lewis 1998). More complete presenta-tions of naive Bayes for text classi�cation are providedby Mitchell (1997) and Nigam et al. (1999).4.3 Shrinkage and Naive BayesWhen naive Bayes is not provided with su�cient train-ing data, the parameters for word probability estimateswill be poor. We now describe shrinkage|amethod forimproving these estimates by taking advantage of thehierarchy. In our hierarchical setting, consider tryingto estimate the probability of the word \intelligence" inthe class NLP. Clearly this is a word that should havenon-negligible probability in NLP. However, when theamount of training data is small, we may be unluckyand the observed frequency of \intelligence" may bevery far from its true value. However, one level up inthe hierarchy, the Arti�cial Intelligence class containsall the NLP documents, plus many more somewhatrelated ones. Here, the probability of the word \in-telligence" may be reliably estimated. This estimate,while related, is not the true estimate for the NLP class.Shrinkage uses a weighted average of estimates alongan entire path from a leaf to the root, where leaf-levelestimates are the most speci�c, but unreliable, and thehighest-level estimates are the most reliable, but un-speci�c. We can calculate mixture weights guaranteedto maximize the likelihood of held-out data by an iter-ative re-calculation process for the weights.More formally, let fP1(wtjcj); : : : ;Pk(wtjcj)g be ksuch estimates, where P1(wtjcj) is the estimate us-ing training data just in the leaf, Pk�1(wtjcj) is theestimate at the root using all the training data, andPk(wtjcj) is the uniform estimate (Pk(wtjcj) = 1=jV j).The interpolation weights among the ancestors of classcj are written f�1j ; �2j ; : : : ; �kj g, where Pki=1 �ij = 1.We write �P(wtjcj) for the new estimate of the class-conditioned word probabilities based on shrinkage.The new estimate for the probability of word wt givenclass cj is just the weighted average of the estimatesalong the path to the root of the hierarchy:

www.manaraa.com

�P(wtjcj) = �1jP1(wtjcj) + : : :+ �kjPk(wtjcj): (6)Given a set of parameter estimates along the pathfrom a leaf to the root, how do we decide on the weightsfor performing the weighted average? The mixtureweights, �ij are set such that they maximize the likeli-hood of some previously unseen \held-out" data byusing EM (Dempster, Laird, & Rubin 1977). Thismethod straightforwardly calculates such weights foreach leaf class, cj , using the following iterative proce-dure:First, for each class cj , sum, (over each word in theheld-out data), the likelihood that it was generated bythe ith ancestor. Call this sum �ij :�ij = Xwt2di2D �ijPi(wtjcj)P(cj jdi): (7)Then, normalize all the �j 's (on a path from a leafnode to the root) such that they sum to one. Then, setthe new value of each �ij to its corresponding normal-ized �ij , and iterate until the �'s converge to a stablevalue, usually in less than a dozen iterations.A more complete description of hierarchical shrink-age for text classi�cation is presented by McCallum etal. (1998). Carlin & Louis (1996) present a introduc-tion and summary of general shrinkage.The experimental results reported in the next sectionuse a special shrinkage model with an extra degree offreedom: the EM procedure is used not only to set themixture weights �, but also to redistribute the worddata up and down the hierarchy. Space limitationsprevent a full explanation here, but details are givenby Hofmann & Puzicha (1998).4.4 Experimental ResultsNow we describe results of classifying computer scienceresearch papers into the 51-leaf hierarchy mentionedabove. A test set was created by taking a randomsample of 250 research papers from the 33,000 paperscurrently in the Cora archive. These 250 papers werethen categorized into the leaves of the topic hierarchyby hand. Forty of them did not �t into any of theleaves, and were discarded|resulting in a 205 docu-ment test set. Keyword matching was applied to thedocuments remaining in the archive, and, by taking thetop 40 matches per leaf (as measured by our informa-tion retrieval engine) 4,631 documents with matcheswere found. In these experiments, we used only thetitle, author, institution, and abstracts of papers, andnot the full text of the paper.The keyword-matching method obtained a surpris-ingly good 66% accuracy. If we were not working in a

domain with which we already have much expertise, weexpect that good keywords would be more elusive, andthat reduced accuracy would result. Traditional naiveBayes, when trained on these imperfectly-labeled doc-uments receives a reduced accuracy of 62%. Here, themedian number of these short training documents isonly 100 per class, which is quite small for estimat-ing the parameters of a multinomial with a vocabu-lary size of 58079. The fact that data sparseness lim-its accuracy here is con�rmed by the increased perfor-mance of shrinkage. It achieves 70% accuracy, provid-ing our highest accuracy yet. A bene�cial feature ofshrinkage is that as the hierarchy becomes wider anddeeper, shrinkage should improve relative performanceeven more strongly because fragmentation will causeper-class data to be even more sparse, and becausethere will be more nodes in the hierarchy from whichto \borrow strength."Another interesting source of extra training data iscompletely unlabeled data|documents that were notmatched by any of the keywords. In past work (Nigamet al. 1999) we show that text classi�cation accuracycan be dramatically increased by augmenting a smallset of labeled data with a large pool of unlabeled data.EM is used to probabilistically �ll in the \missing"class labels. We have recently performed a preliminaryexperiment showing that this technique holds promisefor the Cora classi�cation task. We randomly selected464 out of the 4631 keyword-labeled documents. Whenthese are used to train traditional naive Bayes, it ob-tains 29% accuracy. The application of shrinkage in-creases accuracy to 47%. Then, interestingly, incor-porating the remaining 4167 documents as unlabeleddata brings accuracy up to an impressive 56%. In up-coming work we will perform experiments applying thistechnique to large quantities of the 33,000 Cora docu-ments.5 Information ExtractionInformation extraction is concerned with identifyingphrases of interest in textual data. For many applica-tions, extracting items such as names, places, events,dates, and prices is a powerful way to summarize theinformation relevant to a user's needs. In the case ofa domain-speci�c search engine, the automatic extrac-tion of information speci�c to the domain of interestcan increase the accuracy and e�ciency of a directedsearch.We have investigated techniques for extracting the�elds relevant to research papers, such as title, author,journal and publication date. The extracted �eldsare used to allow searches over speci�c �elds, to pro-vide useful e�ective presentation of search results (e.g.

www.manaraa.com

showing title in bold), and to match references to pa-pers, in order to display links to papers referenced bythe current paper, and papers that reference the cur-rent paper.5.1 Hidden Markov ModelsOur information extraction approach is based on hid-den Markov models (HMMs) and their accompanyingsearch techniques that are so widely used for speechrecognition and part-of-speech tagging (Rabiner 1989;Charniak 1993). Discrete output, �rst-order hiddenMarkov models are composed of a set of states Q, withspeci�ed initial and �nal states qI and qF , a set of tran-sitions between states (q ! q0), and a discrete alphabetof output symbols � = �1�2 : : : �M . The model gener-ates strings x = x1x2 : : : xl by beginning in the initialstate, transitioning to new state, emitting an outputsymbol, transitioning to another state, emitting an-other symbol, and so on, until a transition is made intothe �nal state. The parameters of the model are thetransition probabilities P(q ! q0) that one state fol-lows another and the emission probabilities P(q " �)that a state emits a particular output symbol. Theprobability of a string x being emitted by an HMM Mis computed by:P (xjM) = Xq1;:::;ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " xk); (8)where q0 and ql+1 are restricted to be qI and qF respec-tively, and xl+1 is an end-of-string token. The observ-able output of the system is the sequence of symbolsthat the states emit, but the underlying state sequenceitself is hidden. One common goal of learning prob-lems that use HMMs is to recover the state sequenceV (xjM) that has the highest probability of having pro-duced an observation sequence:V (xjM)= argmaxq1 :::ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " xk): (9)Fortunately, there is an e�cient algorithm, called theViterbi algorithm (Viterbi 1967), that e�ciently recov-ers this state sequence.HMMs may be used for information extraction fromresearch papers by formulating a model in the followingway: each state is associated with a �eld class that wewant to extract, such as title, author, institution, etc.Each state emits words from a class-speci�c unigramdistribution. In order to label classes from new text, wetreat the words from the new text as observations anduse the Viterbi algorithm to recover the most-likely

state sequence. Any words in the Viterbi path pro-duced by the \title" state are labeled as title words,and so on. We can learn the class-speci�c unigram dis-tributions and the transition probabilities from data.In our case, we collected BibTeX �les from the Webwith reference classes explicitly labeled, and used thetext from each class as training data for the appro-priate unigram model. Transitions between states areestimated directly from a labeled training set.HMMs have been used in other systems for infor-mation extraction and the closely related problems oftopic detection and text segmentation. Leek (1997)uses hidden Markov models to extract informationabout gene names and locations from scienti�c ab-stracts. The Nymble system (Bikel et al. 1997) dealswith named-entity extraction, and a system by Yam-ron et al. (1998) uses an HMM for topic detection andtracking. Our approach to information extraction issimilar to wrapper induction (Knoblock et al. 1998;Kushmerick 1997).5.2 ExperimentsIn order to investigate the modeling potential of HMMsfor information extraction from research papers, weconducted the following set of experiments on referenceextraction. Five hundred references were selected atrandom from a set of 500 research papers. The wordsin each of the 500 references were manually tagged withone of the following 13 classes: title, author, insti-tution, location, note, editor, publisher, date, pages,volume, journal, booktitle, and technical report. Thetagged references were split into a 300-instance, 6995word token training set and a 200-instance, 4479 wordtoken test set. Unigram language models were builtfor each of the thirteen classes from almost 2 millionwords of BibTeX data acquired from the Web. Theunigram models were based on a vocabulary of 44,000words, and were smoothed using absolute discounting(Ney, Essen, & Kneser 1994). For all of the models weconsidered, every state was always associated with oneclass label, and used the appropriate unigram distri-bution to provide its emission probabilities. Emissiondistributions were never re-estimated during the train-ing process.Four increasingly sophisticated modeling techniqueswere investigated, all using the labels provided in thetraining data. Techniques to derive HMMs that do notrely on labeled training data are discussed below, andresults using these techniques are forthcoming.The �rst experiment was to create a fully-connectedHMM (HMM-0) where each class was represented bya single state. The outgoing transitions for each statewere given equal probability. Finding the most likely

www.manaraa.com

start author1.000

0.821

title0.179

0.853

institution

0.029

tech0.029

editor0.029

booktitle0.029

journal

0.029

0.857

0.143
0.800

institution

0.200

0.800

date

0.200
0.375

end0.625

0.909

0.091

0.111

0.889

0.667

volume0.333

1.000Figure 5: HMM built from only �ve labeled references after merging neighbors and collapsing V-neighbors in the forwardand backward directions. Note that the structure is close to many reference section formats.path through this model for an observation sequence isequivalent to consulting each unigram model for eachtest set word, and setting each word's class to the classof the unigram model that produces the highest prob-ability.Second, another fully connected HMM (HMM-1)was built with one state per class, except that the tran-sition probabilities were estimated from the labeledtraining data. In this case, the transition parameterswere set to the maximum likelihood estimates deter-mined by counting the transitions in the 300 taggedtraining references, plus a smoothing count of 1 whichwas added to all transitions to avoid non-zero proba-bilities.Next, an HMM was built directly from the class la-bels of the tagged training references. Each word tokenin the training set, represented by its class label, wasassigned a single state that only transitioned to thestate that followed it. From the initial state, there were300 equiprobable transitions into sequences of states,where each sequence represented the tags for one of the300 training references. This model consisted of 6997states, and was maximally speci�c in that its transi-tions exactly explained the training data.This maximally speci�c HMM was put through a se-ries of state merges in order to generalize the model.First, \neighbor merging" combined all states thatshared a unique transition and had the same class la-bel. For example, all adjacent title states for one ref-erence are merged into one title state, representing thesequence of title words for that reference. As two stateswere merged, transition counts were preserved, so thata self-loop was introduced on the new merged state. Asmultiple neighbor states with the same class label weremerged into one, the self-transition loop probability in-creased, and represented the expected state durationfor that class. After neighbor merging, the maximally

speci�c HMM was reduced from 6997 states to 1677states (HMM-2).Next, the neighbor-merged HMM was put throughforward and backward V-merging. For V merging, anytwo states that share transitions from or to a commonstate and have the same label are merged. An exampleof an HMM built from just 5 tagged references afterV-merging is shown in Figure 53. Notice that evenwith just �ve references, the model closely matches theformats found in many reference sections. After V-merging, the HMM was reduced from 1677 states to46 states (HMM-3).All four HMM models were used to tag the 200 testreferences by �nding the Viterbi path through eachHMM for each reference. The class labels of the statesin the Viterbi path are the classi�cations assigned toeach word in the test references. Word classi�cation ac-curacy results for two testing scenarios are reported inTable 1. In the `Any word' case, state transitions wereallowed to occur after any observation word. In the`Punc word' case, state transitions to a new state (witha di�erent class label) were only allowed to occur afterobservations ending in punctuation. In many formatstyles, punctuation is a standard delimiter for �elds.For HMM-0, allowing transitions only after words withpunctuation greatly increases classi�cation accuracy,since in this case punctuation-delimited phrases arebeing classi�ed instead of individual words. For thelast three cases, the overall classi�cation accuracy isquite high. The V-merged HMM derived directly fromthe training data (HMM-3) performs at 93% accuracy,as well as the deterministic HMM where only one statewas allowed per class (HMM-1). For these three cases,limiting state transitions to occur only after words with3The HMM Graphwas produced with AT&T's graphviz package, available athttp://www.research.att.com/sw/tools/graphviz/

www.manaraa.com

AccuracyModel # states Any word Punc wordHMM-0 13 59.2 80.8HMM-1 13 91.5 92.9HMM-2 1677 90.2 91.1HMM-3 46 91.7 92.9Table 1: Word classi�cation accuracy results (%) on 200test references (4479 words).punctuation improved accuracy by about 1% absolute.5.3 Future WorkAll of the experiments presented above used HMMswhere the model structure and parameters were esti-mated directly from labeled training instances. In thenear future, we will begin using model estimation tech-niques that do not rely on labeled training examplesto induce a model. Using unlabeled data is preferableto labeled data because generally greater quantities ofunlabeled data are available, and model parametersmay be more reliably estimated from larger amountsof training data. Additionally, manually labeling largeamounts of training data can be costly and error-prone.Speci�cally, if we are willing to �x the model size andstructure, we can use the Baum-Welch estimation tech-nique (Baum 1972) to estimate model parameters. TheBaum-Welch method is an Expectation-Maximizationprocedure for HMMs that �nds local likelihood max-ima, and is used extensively for acoustic model estima-tion in automatic speech recognition systems.We can also remove the assumption of a �xed modelsize and estimate the model size, structure and pa-rameters directly from the data using Bayesian ModelMerging (Stolcke 1994). Bayesian Model Merging in-volves starting out with a maximally speci�c hiddenMarkov model, where each training observation is rep-resented by a single state. Pairs of states are iterativelymerged, generalizing the model until an optimal trade-o� between �t to the training data and a preferencefor smaller, more generalized models is attained. Thismerging process can be explained in Bayesian terms byconsidering that each merging step is looking to �ndthe model that maximizes the posterior probability ofthe model given the training data.We will test both of these induction methods on ref-erence extraction, and will include new experiments onheader extraction. We believe that extracting informa-tion from headers will be a more challenging problemthan references because there is less of an establishedformat for presenting information in the header of apaper.

6 Related WorkSeveral related research projects are investigating theautomatic construction of special-purpose web sites.Perhaps the most related is the New Zealand DigitalLibrary project (Witten et al. 1998), which has cre-ated publicly-available search engines for domains fromcomputer science technical reports to song melodies.The emphasis of this project is on the creation of full-text searchable digital libraries, and not on underlyingmachine learning technology. The web sources for theirlibraries are manually identi�ed. No high-level organi-zation of the information is given. No information ex-traction is performed and, for the paper repositories,no citation linking is provided.The WebKB project (Craven et al. 1998) is an ef-fort to extract domain-speci�c information available onthe Web into a knowledge base. This project also has astrong emphasis on using machine learning techniques,including text classi�cation and information extrac-tion, to promote easy re-use across domains. Twoexample domains, computer science departments andcompanies, have been developed. No searching facili-ties are provided over the extracted knowledge bases.The CiteSeer project (Bollacker, Lawrence, & Giles1998) has also developed an internal search engine forcomputer science research papers. It provides simi-lar functionality for searching and linking of researchpapers. It does not provide information extraction ofpapers and references, or a hierarchy of the �eld. TheCiteSeer project is aimed at reproducing a citation in-dex, and thus focuses more on domain-speci�c imple-mentation aspects for research papers, and not as muchon automating the general construction of search en-gines with machine learning techniques.The WHIRL project (Cohen 1998) is an e�ort tointegrate a variety of topic-speci�c sources into a sin-gle domain-speci�c search engine. Information is ex-tracted from web pages by simple hand-written extrac-tion patterns that are customized for each web source.The emphasis is on providing fuzzy matching for in-formation retrieval searching. Two demonstration do-mains of computer games and North American birdsintegrate information from tens of web sites each.7 Conclusions and Future WorkThe amount of information available on the Internetcontinues to grow exponentially. As this trend con-tinues, we argue that, not only will the public needpowerful tools to help them sort though this informa-tion, but the creators of these tools will need intelligenttechniques to help them build and maintain the tools.This paper has shown that machine learning techniquescan signi�cantly aid the creation and maintenance of

www.manaraa.com

domain-speci�c search engines. We have presented re-search in reinforcement learning, text classi�cation andinformation extraction towards this end.Much future work in each machine learning area hasalready been discussed. However, we also see manyother areas where machine learning can further au-tomate the construction and maintenance of domain-speci�c search engines. For example, text classi�cationcan decide which documents on the Web are relevantto the domain. Unsupervised clustering can automat-ically create a topic hierarchy and generate keywords.Collaborative �ltering and information retrieval cangenerate a user-speci�c recommended reading list. Weanticipate developing a suite of many machine learningtechniques so domain-speci�c search engine creationcan be accomplished quickly and easily.AcknowledgementsMost of the work in this paper was performed while allthe authors were at Just Research. The second, thirdand fourth authors are listed in alphabetic order.ReferencesBaum, L. E. 1972. An inequality and associated maxi-mization technique in statistical estimation of probabilis-tic functions of a Markov process. Inequalities 3:1{8.Bellman, R. E. 1957. Dynamic Programming. Princeton,NJ: Princeton University Press.Bikel, D. M.; Miller, S.; Schwartz, R.; and Weischedel, R.1997. Nymble: a high-performance learning name-�nder.In Proceedings of ANLP-97, 194{201.Bollacker, K. D.; Lawrence, S.; and Giles, C. L. 1998.CiteSeer: An autonomous web agent for automatic re-trieval and identi�cation of interesting publications. InAgents '98, 116{123.Boyan, J.; Freitag, D.; and Joachims, T. 1996. A machinelearning architecture for optimizing web search engines. InAAAI workshop on Internet-Based Information Systems.Carlin, B., and Louis, T. 1996. Bayes and EmpiricalBayes Methods for Data Analysis. Chapman and Hall.Charniak, E. 1993. Statistical Language Learning. Cam-bridge, Massachusetts: The MIT Press.Cho, J.; Garcia-Molina, H.; and Page, L. 1998. E�cientcrawling through URL ordering. In WWW7.Cohen, W. 1998. A web-based information system thatreasons with structured collections of text. In Agents '98.Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.;Mitchell, T.; Nigam, K.; and Slattery, S. 1998. Learningto extract symbolic knowledge from the World Wide Web.In AAAI-98, 509{516.Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.Maximum likelihood from incomplete data via the EMalgorithm. Journal of the Royal Statistical Society, SeriesB 39(1):1{38.

Hofmann, T., and Puzicha, J. 1998. Statistical modelsfor co-occurrence data. Technical Report AI Memo 1625,Arti�cial Intelligence Laboratory, MIT.Joachims, T.; Freitag, D.; and Mitchell, T. 1997. Web-watcher: A tour guide for the World Wide Web. In Pro-ceedings of IJCAI-97.Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.Reinforcement learning: A survey. Journal of Arti�cialIntelligence Research 237{285.Knoblock, C.; Minton, S.; Ambite, J. L.; Ashish, N.;Modi, P.; Muslea, I.; Philpot, A. G.; and Tejada, S.1998. Modeling web sources for information integration.In AAAI-98.Kushmerick, N. 1997. Wrapper Induction for InformationExtraction. Ph.D. Dissertation, University of Washington.Leek, T. R. 1997. Information extraction using hiddenMarkov models. Master's thesis, UC San Diego.Lewis, D. D. 1998. Naive (Bayes) at forty: The indepen-dence assumption in information retrieval. In ECML-98.McCallum, A., and Nigam, K. 1998. A comparisonof event models for naive Bayes text classi�cation. InAAAI-98 Workshop on Learning for Text Categorization.http://www.cs.cmu.edu/�mccallum.McCallum, A.; Rosenfeld, R.; Mitchell, T.; and Ng, A.1998. Improving text clasi�cation by shrinkage in a hier-archy of classes. In ICML-98, 359{367.Menczer, F. 1997. ARACHNID: Adaptive retrieval agentschoosing heuristic neighborhoods for information discov-ery. In ICML '97.Mitchell, T. M. 1997. Machine Learning. New York:McGraw-Hill.Ney, H.; Essen, U.; and Kneser, R. 1994. On structuringprobabilistic dependences in stochastic language model-ing. Computer, Speech and Language 8:1{38.Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T.1999. Text classi�cation from labeled and unlabeled doc-uments using EM. Machine Learning. To appear.Rabiner, L. R. 1989. A tutorial on hidden Markov modelsand selected applications in speech recognition. Proceed-ings of the IEEE 77(2):257{286.Stolcke, A. 1994. Bayesian Learning of Probabilistic Lan-guage Models. Ph.D. Dissertation, UC Berkeley.Torgo, L., and Gama, J. 1997. Regression using classi�-cation algorithms. Intelligent Data Analysis 1(4).Viterbi, A. J. 1967. Error bounds for convolutional codesand an asymtotically optimum decoding algorithm. IEEETransactions on Information Theory IT-13:260{269.Witten, I. H.; Nevill-Manning, C.; McNab, R.; andCunnningham, S. J. 1998. A public digital library basedon full-text retrieval: Collections and experience. Com-munications of the ACM 41(4):71{75.Yamron, J.; Carp, I.; Gillick, L.; Lowe, S.; and van Mul-bregt, P. 1998. A hidden Markov model approach to textsegmentation and event tracking. In Proceedings of theIEEE ICASSP.

